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PROJECT DESCRIPTION

Modern cryptosystems based on integer factorization or the discrete logarithm
problem are vulnerable to attacks by quantum computers. New cryptosystems are
required to resist these future computers or to strengthened information security
in current devices. In 2016, the National Institute for Standards (NIST) made a
call for proposal and after 7 years of rigorous evaluations, the McEleice cryptosys-
tem and its variant using Quasi-Cyclic Moderate Density Parity-Check codes are
among the finalists in the NIST post-quantum competition. In this project we will
focus in learning the mathematical aspects of the McEliece cryptosystem and its
variant, which are presented in the paper [1]. Notes based our discussions will be
written and our contribution in this project will be to construct various examples to
illustrate concepts and results in order to make the material accessible to a broad
mathematical audience. In some cases we are planning on providing proofs to facts
stated without proof in [1].

[1] R. Misoczki, J. -P. Tillich, N. Sendrier and P. S. L. M. Barreto, ”MDPC-McEliece: New McEliece
variants from Moderate Density Parity-Check codes,” 2013 IEEE International Symposium on Infor-
mation Theory, Istanbul, Turkey, 2013, pp. 2069-2073, doi: 10.1109/ISIT.2013.6620590.
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1. INTRODUCTION TO CODING THEORY

Coding Theory is a branch of Mathematics born in the late 40’s with the works
of Claude Shannon and Richard Hamming (add references). The main object of
study in Algebraic Coding Theory are linear error-correcting codes. These can be
broadly understood as a finite dimensional subspace of a finite dimensional vector
space over a finite field. The main goal of this section is to give an introduction to
Algebraic Coding Theory.

1.1. Finite Fields. Recall that a field is is a set F with two binary operations,
addition “+” and multiplication “·”, such that (F,+) and (F∗, ·) are abelian groups,
where F∗ is the set of all nonzero elements of F . A finite field is a field with a finite
number of elements.

The following result will provide an infinite number of examples of finite fields.

Lemma 1. Let n ≥ 1 be an integer and consider the set Zn of integers modulo n.
Then Zn is a finite field if and only if n is a prime number.

The finite field Zp is often written as Fp and the elements of Fp can be consid-
ered to be {0,1,2, . . . , p−1}. We follow this notation throughout these notes.

Example 2 (The binary field). The binary field is the finite field F2 = {0,1}. The
operations in F2 = {0,1} are addition and multiplication modulo 2, which are given
in the next tables:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Example 3. The set F3 with the operations of addition and multiplication modulo
3 is a finite field with 3 elements. The operations are given next:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Finite fields other than Fp can be constructed using polynomial rings and maxi-
mal ideals in that ring. The following result characterizes (up to isomorphism) all
finite fields. The interested reader is addressed to (add references) for more details.

Theorem 4. Let f (x) ∈ Fp[x] be an irreducible polynomial in Fp[x]. Then the
quotient ring

Fpm =
Fp[x]
⟨ f (x)⟩

is a finite field with pm elements where m = deg( f (x)) and ⟨ f (x)⟩ is the principal
ideal of Fq[x] generated by f (x). Moreover, if F is a finite field then F has pm

elements (for some prime p and integer m ≥ 1) and F is isomorphic to Fpm .

Example 5. A finite field with 4 elements can be constructed as

F22 =
F2[x]
⟨ f (x)⟩

,
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where f (x) is an irreducible polynomial over F2 with deg( f (x)) = 2. The only
irreducible polynomial of degree 2 over F2 is f (x) = x2 + x+1. Hence

F2[x]
⟨ f (x)⟩

= p(x)+ x2 + x+1 = {ax+b+ ⟨ f (x)⟩ : a,b ∈ F2}.

If α = x+ ⟨ f (x)⟩, then F4 = {0,1,α,α + 1}. The Cayley tables for addition and
multiplication are as follows.

+ 0 1 α α +1
0
1
α

α +1

· 0 1 α α +1
0
1
α

α +1

1.2. The Hamming Space. Let n ≥ 1 be an integer, Fq be a finite field and

Fn
q = {(v1,v2, . . . ,vn) : vi ∈ Fq, 1 ≤ i ≤ n}.

Observe that Fn
q consists of all n-tuples with entries from the finite field Fq. When

this set is equipped with the usual operations of vector addition and scalar multi-
plication, Fn

q becomes a vector space over Fq of dimension n.
The Hamming weight of v = (v1,v2, . . . ,vn) ∈ Fn

q is defined as the number of
non-zero entries of v, i.e.,

wH(v) = |{i : 1 ≤ i ≤ n,vi ̸= 0}|
The Hamming distance between u,v ∈ Fn

q is defined as the number of coordinates
on which u and v differ, i.e.,

dH(u,v) = wH(u− v).

The Hamming distance satisfies the properties of a metric. That is, for all ,v,w∈Fn
q

(1) (Non-negativity) dH(u,v)≥ 0, and dH(u,v) = 0 if and only if u = v.
(2) (Symmetry) dH(u,v) = dH(v,u).
(3) (Triangle innequality) dH(u,v)≤ dH(u,w)+dH(w,v).

Therefore, (Fn
q,dH) is a metric space, known as the Hamming space.

1.3. Linear codes. Let n ≥ 1 be an integer and Fq be a finite field. An [n,k] linear
code over fFq is a k-dimensional subspace of Fn

q. We refer to n and k as the length
and dimension of the code, respectively. Along with these two parameters, the
quality of an [n,k] linear code C over Fq is measured by a third one, namely the
the minimum Hamming distance of the code, which is defined as

dH(C ) = min{dH(u,v) : u,v ∈ C ,u ̸= v}.
Since C is a subspace, it can be shown that

dH(C ) = min{wH(u) : u ∈ C ,u ̸= 0}.
The number wH(C ) = min{wH(u) : u ∈ C ,u ̸= 0} is called the minimum weight
of the code C . Thus, the previous relation can be restated as: for a linear code C ,
its minimum Hamming distance coincides with its minimum Hamming weight. Of
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course, computing the minimum weight of a code requires less effort than comput-
ing the minimum Hamming distance. This is one advantage of linear codes over
non-linear codes.

An [n,k,d] linear code C is an [n,k] linear code with dH(C ) = d. It should be
noted that the three parameters do not define a code uniquely.

A [n,k] linear code C over Fq can be completely specified by one of its basis.
A generator matrix of C is defined as an k× n matrix whose rows form a basis
for C . A second common way to specify a linear code is by describing a basis of
its orthogonal complement. Recall that on the n-dimensional vector space Fn

q we
define the dot product or scalar product of u = (u1, . . . ,un) and v = (v1, . . . ,vn) as

u · v = u1v1 + · · ·+unvn ∈ Fq.

Two vectors u,v ∈ Fn
q are said to be orthogonal if u · v = 0. The orthogonal com-

plement of a subspace V of Fn
q is defined as

V⊥ = {u ∈ Fn
q : u · v = 0 ∀v ∈V}.

An important result concerning s subspace and its orthogonal complement is the
following.

Theorem 6. Let V a subspace of Fn
q of dimension k. Then (V⊥)⊥ =V and

dimFq(V )+dimFq(V
⊥) = n.

A parity-check matrix of an [n,k] linear code C over Fq is an (n− k)×n matrix
H such that

GHt = 0,
where G is a generator matrix of C . In other words, the rows of H form a basis of
C⊥. The [n,n− k] linear code C⊥ is called the dual code of C and H is one of its
generator matrices. The following result shows how to compute the parity check
matrix from the generator matrix.

Proposition 7. Let C be an [n,k] linear code over Fq. The matrix G = [Ik | A] is a
generator matrix of C if and only if H = [−At | In−k] is a parity-check matrix of C .

The generator matrix G = [Ik | A] of C is said to be in standard form. It is
important to note that not every code has a generator matrix in standard form,
but every generator matrix can be turned into a one in standard form by doing
elementary row operations and column permutations. That is, if G is a generator
matrix of an [n,k] linear code over Fq, then there exists a matrix S ∈ GLk(Fq) and
a permutation matrix P ∈ Matn×n(Fq) such that

G′ = [Ik | A] = SGP.

A parity check matrix H of C such that GHt = 0 can be shown to be

H = [−At | In−k]P−1.

An interesting application of the parity-check matrix of a code is that the min-
imum distance can be computed by knowing the linear independence relationship
between its columns. More precisely, we have:
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Proposition 8. Let C be an [n,k] linear code over Fq and H a parity-check matrix
of C . Then d = dH(C ) if and only if every set of d − 1 columns of H is linearly
independent but there is a set of d linearly dependent columns of H.

Example 9. Let C be the linear code over F2 with generator matrix

G =

1 1 1 1 0
0 1 1 0 1
0 0 0 1 1


Elementary row operations transform G into the matrix

G̃ =
[
1 0

]
Applying the permutation π = () to the columns of G̃ gives

G′ = [I3 | A] =
[
0 1

]
Therefore

H ′ =
[
0 1

]
Applying the inverse of π to the columns of H ′ we obtain

H =
[
0 1

]
, which is a parity-check matrix of C . Lastly, since the rows of G are elements of
the code C , we know that dH(C ) ≤ 2. By Proposition 8, the minimum Hamming
distance is the minimum number of positions in which two distinct codewords
differ. In this case, (dH(C) ≤ 2 indicates that the minimum Hamming distance is
at most 2.

2. QUASI-CYCLIC MODERATE DENSITY PARITY-CHECK CODES

This section focuses on the class of Moderate Density Parity-Check codes (MDPC)
which are also quasi-cyclic (QC). Broadly speaking, this family of binary codes
can be defined by giving a parity-check matrix H which is block circulant with the
property that every row of H has a moderate density of 1’s. To be ore precise, we
firts introduce the family of quasi-cyclic codes and then the family of QC-MDPC
codes.

2.1. Quasi-cyclic codes.

Definition 10. If C ⊂ Fn
q a (n,k)-linear code. It is stated that C is cyclic if if the

following property is satisfied:

∀c0 · · ·cn−1 ∈C,cn−1c0 · · ·cn−2 ∈C.

we note that if C is a cyclic code, then given c0 · · ·cn−1 ∈C, the words cn−1c0n−2 ,
cn−2cn−1c0n−3 are also in C.

On the other hand, we can also characterize cyclic codes by looking at what
happens at the base of the code and also by its structure. For this there are the
following two characterizations.
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Proposition 11. First characterization of the cyclic codes: If C ∈ Fn
q a (n,k) linear

code with base B = {x1, · · ·xk}. then, C is cyclic if and, only if,∀xi ∈ B, with i =
1, · · · ,k, it follows that, xin−1xi0in−2 ∈C, where xi = xi0in−2xin−1.

Example 12. If C ⊆ F7
2 an linear code the generating matrix of which is given by:

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


Then, a base of C is B = 1101000,0110100,0011010,0001101, We can see that
the first three are in C, since:

1101000 +→ 0110100

0110100 +→ 0011010
0011010 +→ 0001101

i.e., the three previous ones are translations, but the last one is not.

0001101 +→ 1000110

We can see that by translation it seems that it is not from C, but we can use proper-
ties of the field where we are to see that:

1000110 = 1101000+0110100+0011010.

So this word belongs to the base of C. Then C is a cyclic code.

Proposition 13. Second characterization of the cyclic codes: If C ⊆ Fn
q cyclic

code. Then, C is cyclic if and only if , C(x) is an ideal of Fq \ [x] (xn −1).

To determine what the generator matrices of these codes are like, we must first
determine what their generator polynomial is.

Proposition 14. If C ⊆ Fn
q a cyclic code. Then, exthere is a single monic polyno-

mial g(x) of a minimum degree such that.

C(x) = (g(x)) = t(x)g(x) ∈ Fq \ [x] (xn −1)|t(x) ∈ Fn
q .

where, g(x) is a factor in xn −1 in Fq [x]

Example 15. Let’s calculate the codes of length 7 in F2, then let us first determine
their irreducible factors over F2 at x7 −1. Then:

x7 −1 = (x3 + x+1)(x3 + x2 +1)(x+1)

Proposition 16. Generator Matrix: Let C ⊆ Fn
q be a cyclic code with a genera-

tor polynomial g(x) = ∑
n−k
i=0 gixi of degree n− k. In such a case, C is a code of

dimension k, and its generator matrix is expressed as follows.
g0 g1 · · · 0 0 · · · 0
0 g0 g1 · · · 0 · · · 0
...

...
...

. . . . . . . . .
...

0 · · · 0 g0 g1 · · · gn−k
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Example 17. If we consider C3 as the cyclic binary code of length 7 with the
generator polynomial g3(x) = x3 + x+ 1, then, applying the above, the generator
matrix of C3 is expressed as follows.

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


then:

1 ·g(x) = 1101000

x ·g(X) = 0110100

x2 ·g(x) = 0011010

x3 ·g(x) = 00011001

Proposition 18. Control matrix: If C ⊂ Fn
q a cyclic code with the control polyno-

mial h(x) = ∑
k
i=0 hixi of degree k. Then, a control of matrix the C is:

hk hk−1 · · · h0 0 · · · 0
0 hk hk−1 · · · h0 · · · 0
...

...
...

. . . . . . . . .
...

0 · · · 0 hk hk−1 · · · h0


2.2. QC-MDPC codes. Quasi-cyclic codes are of great importance due to the lim-
itation of cyclic codes of extension q, which cannot have a length greater than q.
On the contrary, quasi-cyclic codes are based on modular structures in order to
append multiple cyclic codes and thereby increase the length as needed.

Note 1. :A cyclic code can be seen as a particular case of quasi-cyclic codes when
the length l = 1.

Definition 19. A quasi-cyclic code is a type of linear code in which cyclically
shifting a codeword by a fixed number n0 ̸= 1 (or a multiple of n0) of symbol
positions, either to the right or to the left, results in another codeword. It is evident
that when n0 = 1, a quasi-cyclic code becomes a standard cyclic code. The integer
n0 is referred to as the shifting constraint. Additionally, it is noteworthy that the
dual code of a quasi-cyclic code is also quasi-cyclic.

Example 20. Consider the (9,3) code generated by the following generator matrix:

G =

111 100 110
110 111 100
100 110 111


Now, to see what a quasi-cyclic code is, we must list all of its words, which are
in the following table: Suppose that we move the word fifth (001011010) three
positions to the right, i.e:

(001011010) 3+→ (010001011)
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000 000 000
111 100 110
100 111 100
100 110 111
001 011 010
011 010 001
010 001 011
101 101 101

which is the seventh word, we see that it is equal to the cyclic codes, now if we
assume the fifth word first one position to the right and then two respectively we
see that they are not words, since:

(001011010) 1+→ (000101101)

(001011010) 2+→ (100010110)
Clearly, these two are not code words. So this is a quasi-cyclic restriction code
n0 = 3.

Now, let’s describe its generator matrix, which has the characteristic of being a
circulating matrix by blocks.

Definition 21. the generator matrix of an (mn0,mk0) quasi-cyclic code is
G0 G1 · · · Gm−1

Gm−1 G0 · · · Gm−2
...

...
...

G2 G3 · · · G1
G1 G2 · · · G0


Where each Gi is a k0 × n0 submatrix.We see that G given displays the cyclic

structure among the rows and columns in terms of the submatrices G′
is. For 0 ≤

j < m, let M j = [G j,G j−1, · · · ,G j+1]
T .The, we can G in the following form:

G = [M0,M1, · · · ,Mm−1]

Example 22. Consider the (15,5) quasi-cyclic code with parameters m = 5,n0 = 3
and k0 = 1, the following generator matrix:

001 100 010 110 110
110 001 100 010 110
110 110 001 100 010
010 110 110 001 100
100 010 110 110 001


M0 M1 M2 M3 M4

Definition 23. The parity-check matrix H: of a quasi-cyclic code is defined simi-
larly to cyclic codes. For a quasi-cyclic code, the parity-check matrix is constructed
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by considering the quasi-cyclic structure of the code. The matrix H has the general
form:

H =
[
−PT |In−k

]
Where, P is a matrix that defines the quasi-cyclic structure of the code. T denotes
the transpose of matrix P. And In−k is the identity matrix of size (n− k).

Definition 24. QC-MDPC code construction:The construction of the (n,r,w)−QC-
LDPC/QC-MDPC code is based on the construction of the parity check matrix
H of length n = rn0 and row-weigth w.There are several techniques to construc
H including the ”circulants row” technique where the matrix H is formed by
n0(r× r)-circulant matrices H = [H0H1 · · ·Hn0−1] such that Hn0−1 is non-singular
and w = ∑

n0−1
i=0 wi. The corresponding generator matrix G has the form:

G = G =


(H−1n0−1HT

0 )
I(n−r)× (n−r) (H−1n0−1HT

1 )
...

(H−1n0−1HT
n0−2)


3. MCELIECE CRYPTOSYSTEM BASED ON MDPC CODES

The McEliece cryptosystem is a public-key cryptographic system developed by
Robert McEliece in 1978. It is based on the theory of codes, and its security pri-
marily relies on the seemingly random nature of the code’s generator matrix. The
challenge of decoding a linear code whose structure is unknown is another key fac-
tor in the system’s security. This problem is computationally difficult (NP-Hard),
especially when the code size is large.
Their McEliece variant then works as follows:

3.1. Construction:
(1) Key-Generation: Construct an MDPC-code of length n and row weight

w that can correct up to t errors. For this, generate a parity-check matrix
H,G ∈ Fr×n

2 and its corresponding generator matrix with one of the possi-
ble constructions.
Public key: generator matrix G.
Private key: parity-check matrix H

(2) Encryption: Let m ∈ Fr×n
2 be a message to be encrypted into x ∈ Fr×n

2 For
this generate a codeword e ∈ Fr×n

2 of weight less than t, wt(e) ≤ t. Then
the message m is encrypted by:

x = mG+ e.

(3) For decryption choose a decoding algorithm φH (such as the modified bit-
flipping decoding algorithm) which knows the parity-check matrix H. To
decrypt the received word x ∈ Fn

2 into the original message m, compute
first:

mG = φH(x).
Then extract m from the first (nr) positions of mG.
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Decoding of MDPC codes is carried out using techniques similar to those em-
ployed for LDPC codes. Maximum likelihood decoding for LDPC codes is com-
putationally too complex, so iterative decoding algorithms are used instead. How-
ever, due to the higher density of the parity-check matrices, these algorithms exhibit
lower efficiency in MDPC codes.
A simple family of iterative decoders is based on the concept of bit flipping. These
decoders identify, in each iteration, a set of positions in the received word that are
likely to be incorrect. The bits at these positions are flipped, and the iteration con-
tinues with the updated word. The decoding process continues until the word is
fully decoded or a maximum number of iterations is reached.

3.2. Gallager’s bit-flipping. :Let’s delve into the bit-flipping decoding algorithm
introduced by Gallager in 1963 for LDPC codes. As the name suggests, in this al-
gorithm, some bits of the received word are flipped to recover the original message.
In this context, a ”bit” refers to an entry in a binary linear code. This decoding al-
gorithm is well-known and user-friendly. However, it is limited to application only
to a binary alphabet, i.e., G ∈ F2. A modified version of the bit-flipping decoding
algorithm for MDPC codes will be presented later.

FIGURE 1. Bit-flipping decoding algorithm.

3.3. Variant of the Gallager’s bit flipping algorithm. :This iterative decoding
algorithm provides an error-correction capability for LDPC codes that increases
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linearly with the code length and decreases more or less linearly with the weight
w of the parity checks. Therefore, when transitioning from LDPC codes to MDPC
codes, a degradation in the error-correction capability is expected. However, in the
field of cryptography, our interest often lies not in correcting a large number of
errors but rather in ensuring an adequate level of security.
The procedure of Gallager’s bit-flipping algorithm is as follows: In each iteration,
the number of unsatisfied parity-check equations associated with each bit of the
message is assessed. If a bit is associated with more than b unsatisfied equations, it
is flipped, and then the syndrome is recalculated. This process is repeated until the
syndrome becomes zero or after a maximum number of iterations.The complexity
of this algorithm is expressed as O(nwI), where: n is the length of the code, w is
the weight of the parity-checks, and I is the average number of iterations.
Due to the increased row weight (and the existence of short cycles in the corre-
sponding Tanner graph), MDPC codes can lead to a higher number of iterations.
To minimize this problem, a variant of Gallager’s algorithm is suggested by chang-
ing the choice of b. Some possibilities for b are presented below:

(1) We precalculate b by the following inequality:

1− p0

p0
≤
[

1+(1−2pi)
k−1

1− (1−2pi)k−1

]2b− j+1

(2) b is chosen as Maxupc, the maximum number of unsatisfied parity-check
equations;

(3) Our approach: b = Maxupc −δ , for a small integer δ .
Approach 2 is broader than Approach 1, resulting in enhanced error-correction
capability albeit at the expense of a higher number of iterations. On the other
hand, Approach 3 combines the advantages of Approaches 1 and 2 by reducing the
total number of iterations obtained by Approach 2 (with more bits flipped in each
iteration) and providing error-correction capability as effective as Approach 2.

This latter benefit stems from the following strategy: every time the algorithm
fails in decoding, the value of δ is decreased by 1, and the process is restarted.
Clearly, when δ = 0, we revert to Approach 2.

This strategic approach allows dynamically adjusting the parameter δ based on
the algorithm’s performance, adapting it to optimize both error-correction capabil-
ity and iteration efficiency. The flexibility to decrease δ after each decoding failure
contributes to the algorithm’s effectiveness in error correction with a reduced num-
ber of iterations.
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